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Abstract
We develop further our analysis of the third law of thermodynamics; in
particular, we discuss further conditions ensuring the validity of the third
law of thermodynamics in its entropic form (N ). The introduction in
standard homogeneous thermodynamics of the framework in which the absolute
temperature T appears as an independent coordinate for the entropy S is
followed by the introduction of a more general framework in which Gibbs
thermodynamic space, where only extensive independent coordinates appear,
is suitably generalized. General properties of S are also discussed. An analysis
of the differential conditions which can ensure the validity of (N ) follows. Then,
we introduce a condition involving the behaviour of generalized heat capacities
along curves leaving the surface T = 0 and we show that, under suitable
mathematical conditions, it is equivalent to (N ). The physical meaning of this
condition is also clarified, and amounts to the impossibility for a system to leave
a state at T = 0 without heat absorption. Then, we show that a condition of
minimum entropy at T = 0 is again equivalent to (N ) under suitable conditions.
Some notes about (N ) when one allows deformation coordinates to be divergent
as T → 0+ and about phase coexistence and mixtures also appear.

PACS number: 05.70.−a

1. Introduction

In this paper, we discuss some further aspects of the third law of thermodynamics in its entropic
form. In [1] a discussion of the third law, both in Carathéodory’s approach and Gibbs’ one,
has been presented in the framework of standard homogeneous thermodynamics. Herein, we
allow a more general framework and we also use T as an independent thermodynamic variable.
Then, we discuss the differential conditions ensuring (N ) and we present a condition involving
the behaviour of generalized heat capacities as T → 0+ and show that it is equivalent to (N ).
A related condition in the Gibbsian frame, a condition of minimum entropy and its relation
with (N ) are discussed, and a summary of conditions leading to (N ) is presented. Some notes
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about the validity of (N ) when deformation coordinates are allowed to diverge and about phase
coexistence and mixtures also appear. For an introduction to the third law of thermodynamics
and for an extensive list of papers concerning the third law, we refer the reader to [1].

As far as the unattainability version (U ) of the third law and its relation to (N ) are
concerned, we limit ourselves to a short discussion about the de-linking of (U ) with respect to
(N ) in section 8 and in appendix B, referring the reader to Landsberg’s works [2, 3] and also
to [4] for an extensive discussion concerning the relation between (U ) and (N ); see also [5].

The plan of the paper is as follows. In section 2, we discuss some properties of the
thermodynamic domain also by using T as an explicit variable; an heuristic picture for non-
homogeneous thermodynamics is also allowed; in section 3, we discuss some assumptions on
S; in section 4 differential criteria ensuring (N ) are analysed. In section 5, a new condition for
implementing (N ) is introduced, and its physical meaning is discussed. A related condition is
found in section 6. In section 7 the condition of minimum entropy at T = 0 and its relation to
(N ) are discussed. In section 8 we present a short discussion of the violation of (N ) which can
occur as infinities in the deformation parameters are allowed. Section 9 contains notes about
the relation between the heat theorem, phase coexistence and mixtures.

2. Nernst’s heat theorem revisited: the framework

In the following, we consider first standard homogeneous thermodynamics and discuss the
properties of the domain both in Gibbs space and in the frame where T appears as an
independent variable. We point out that the Pfaffian form δQrev is non-singular in the former
frame but it seems to be singular at T = 0 in the latter frame, due to a singular behaviour
of the map U �→ T at T = 0. We also give some explicit examples of this trouble. A very
simple structure for the thermodynamic space is also given.

Then, we introduce a formal framework for non-homogeneous thermodynamics and make
reasonable assumptions about the properties of the domain, generalizing those of standard
thermodynamics.

2.1. Standard homogeneous thermodynamics

We have to distinguish two possible frameworks. We call the ‘Gibbsian framework’ the
framework in which extensive variables are used as independent variables and one starts from
the infinitesimal heat exchanged reversibly δQrev in order to recover the fundamental equation
in the entropy representation (cf [1]). We think that this approach is more fundamental, from
a theoretical point of view, with respect to the one in which T appears as an independent
variable. In fact, the former is a framework where the non-singular character of the Pfaffian
form δQrev is easily justified, moreover the discussion of the problem of T = 0 is well posed.
The troubles arising in the other framework are simply due to the failure of the coordinate
transformation U �→ T to be a diffeomorphism, as it is shown below.

2.1.1. Gibbsian framework. The domain D of S is assumed to be an open convex cone
[1, 6]. Independent variables are (U, V,X1, . . . , Xn). One could also assume that the domain
of S(U, V,X1, . . . , Xn) is a convex cone of the form

D ∪ ∂D = {(U, V,X1, . . . , Xn) | (V ,X1, . . . , Xn) ∈ K, U � b(V,X1, . . . , Xn)} (1)

where K is a convex cone and b(V,X1, . . . , Xn) is an extensive convex function (bounded
from below) which can be construed as the ground-state energy (cf [1, 6]). The range of U
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is an interval bounded and closed from below. It is also useful to introduce a new variable
B = U − b, which is such that B � 0 and B = 0 ⇔ T = 0.

2.1.2. Framework with T replacing U. This is a common framework in thermodynamics. It
can be obtained by inverting the relation between T and U. In passing from (U, V,X1, . . . , Xn)

to (T , V,X1, . . . , Xn), one obtains the following structure from (1), D∪ ∂D = IT ×K, where
IT = {T � 0}. T = T (U, V,X1, . . . , Xn) can be inverted to give U(T , V,X1, . . . , Xn) if
∂T /∂U �= 0. It is to be noted that

∂T

∂U
= 1

CV,X1,...,Xn

(2)

where C is the heat capacity at constant V,X1, . . . , Xn. As far as CV,X1,...,Xn → 0 when
T → 0+, which is a necessary condition for a finite entropy in the limit as T → 0+, the
coordinate transformation U �→ T is singular at T = 0. This is mostly evident if the inverse
transformation T �→ U is performed. This means that U �→ T is not a diffeomorphism.
One gets a representation of the Pfaffian form which holds everywhere except at the boundary
T = 0, where a singularity of the Pfaffian form appears as far as a non-negative definite concave
S has to be finite at T = 0 (see [1], section 6). In the following, the deformation coordinates
are indicated with x1, . . . , xn+1. (We recall that we include constitutive coordinates in the set
of deformation coordinates, as in [1].) In this representation, one has

δQrev = Cx1,...,xn+1(T ) dT +
∑

i

T
∂S

∂xi
dxi. (3)

Under suitable conditions, to be discussed in the following sections, each term in the above
expression vanishes as T → 0+, thus the Pfaffian form seems to be singular at each point
of the surface T = 0 in these coordinates (note that the Pfaffian form (3) in the case of the
ideal gas is not singular at T = 0 because CV,N = const, thus the map U �→ T is regular
at T = 0; nevertheless, the ideal gas model is pathological, because the entropy becomes
negative for small values of T and, moreover, it diverges S → −∞ as T → 0+ and the third
law is violated).

2.1.3. Examples. We show that a non-singular Pfaffian form which is C1 everywhere in
Gibbsian coordinates appears as a singular Pfaffian form in coordinates where T substitutes
U, and, moreover, it can fail to be C1 at T = 0. Let us consider

δQrev = dU + 2
U

V
dV (4)

with D = {U � 0, V > 0}. One obtains a concave entropy S = U 1/3V 2/3 (where an
undetermined multiplicative constant is put equal to 1 for simplicity) and T = 3U 2/3V −2/3.
Moreover, one finds

∂T

∂U
= 2U−1/3V −2/3 (5)

and the correspondence U ←→ T cannot be a diffeomorphism everywhere but only for
U > 0, i.e. T > 0. By inverting, one gets U = 3−3/2T 3/2V and S = 3−1/2T 1/2V . In these
coordinates, we have

δQrev = 1
2 3−1/2T 1/2V dT + 3−1/2T 3/2 dV. (6)

It is evident that both the coefficients of the Pfaffian form vanish when T = 0, but this is due
to the peculiar nature of the coordinate change U �→ T ; the first coefficient is not C1 at T = 0,
where its derivative with respect to T diverges. Note also that ∂S/∂T diverges as T → 0+.
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Let us consider also the well-known photon gas. One has

δQrev = dU +
1

3

U

V
dV (7)

which is defined for U � 0 and V > 0; moreover, S = c0U
3/4V 1/4. T (U, V ) = 0 is obtained

for U = 0. By finding U(T , V ) one gets S(T , V ) = c1V T 3, where c1 is a constant, and

δQrev = c13T 3V dT + c1T
4 dV. (8)

It is evident that both the coefficients of δQrev vanish in these coordinates at T = 0, i.e., the
Pfaffian form seems to be singular if T is used as an independent coordinate.

2.2. Non-homogeneous thermodynamics

More in general, we wish to allow non-homogeneous thermodynamics (i.e., thermodynamics
without homogeneity symmetry), which surely occurs when gravitational interaction becomes
non-negligible. We limit ourselves to heuristic considerations which involve reasonable
assumptions on S and on the domain. An example of construction of a non-homogeneous
thermodynamics, which fits the properties of at least some self-gravitating systems, is found
in [7].

The domain D is assumed to be an open simply connected set which is dense in its
closure, in particular, near the boundary T = 0. This allows a unique extension to T = 0
by continuity of any continuous function h such that limT →0+ h exists. The aforementioned
density property near T = 0 can be obtained, e.g., if, at least near T = 0,D can be written
as a Cartesian product of intervals (one for each variable) D = IT × I1 × · · · × In+1 ⊂ R

n+2,
where IT = (0, T0). One can also introduce a generalization of the Gibbs framework,
where the thermodynamic space is described by (would-be extensive)1 independent variables
U,X1, . . . , Xn+1 and where one assumes that S � 0 and that ∂S/∂U = 1/T > 0. U plays the
role of internal energy and S(U,X1, . . . , Xn+1) should correspond to the fundamental relation
in the entropy representation. The integrable Pfaffian form

δQrev = dU −
∑

ξi dXi (9)

(assumed to be at least in C1(D) ∩ C(D ∪ {T = 0})) is then everywhere non-singular, and
a foliation of the thermodynamic manifold into adiabatic surfaces of codimension 1 can be
given. In the presence of a transversal symmetry, an integrating factor can be straightforwardly
found [6, 7].

Note that relaxing homogeneity has important consequences in the thermodynamic
construction, and superadditivity of the entropy should be privileged in order to obtain a
meaningful picture. See in particular [8, 9] for a general discussion on this topic and see, e.g.,
[7] for the case of quasi-homogeneous thermodynamics.

The set T = 0 is assumed to be a codimension 1 integral manifold of δQrev. In passing to
coordinates where T is an independent coordinate, the Pfaffian form again seems to be singular
in T = 0 because of the lack of regularity of the coordinate transformation U �→ T . Another
hypothesis which can be made is that T = 0 corresponds also to a sort of ground-state energy
U0 = b(X1, . . . , Xn+1), with b bounded from below, in the sense that for the internal energy
U � b(X1, . . . , Xn+1) holds, and, moreover, U = b iff T = 0. The structure for the domain
one can propose is then a generalization of the one for standard thermodynamics,

D ∪ {T = 0} = {(U,X1, . . . , Xn+1) | (X1, . . . , Xn+1) ∈ K, U � b(X1, . . . , Xn+1)} (10)
1 They are expected to be additive, i.e., if one considers a system which is composed of two non-interacting
subsystems, then X = X1 + X2. See [8] and cf [7].
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where K ⊂ R
n+1 is an open set (and, e.g., b ∈ C1(K)). In order to implement superadditivity,

this domain has to be closed under addition. The latter property can be obtained if K is closed
under addition of the Xi variables and if b is subadditive; cf [7] for the quasi-homogeneous
case. Then, by defining B = U − b � 0, one obtains a regular map U �→ B where
T = 0 iff B = 0. One finds D ∪ {T = 0} = IB × K, where IB = [0,∞). Moreover,
∂S/∂B = ∂S/∂U = 1/T . By defining for all i = 1, . . . , n + 1

ξ̃i (B,X1, . . . , Xn+1) ≡ ξi(B,X1, . . . , Xn+1) − ∂b

∂Xi
(B,X1, . . . , Xn+1) (11)

one finds

δQrev = dB −
∑

i

ξ̃i (B,X1, . . . , Xn+1) dXi (12)

and it holds ξ̃i (B = 0, X1, . . . , Xn+1) = 0 for all i = 1, . . . , n + 1, T = 0 being an integral
hypersurface of δQrev in our assumptions.

If one uses T as an independent coordinate, one finds D ∪ {T = 0} = IT × K.
Another possibility is to describe in general the boundary T = 0 as a boundary of

a differentiable manifold, as in section 5.5.1 of [1]. See appendix A for some comments
involving the main results of this paper.

2.3. The boundary T = 0

Here we assume that the T = 0 is included in the domain of S as a function of T and that
the surface T = 0 is connected (and also path-connected; with ‘connected’ we shall mean
path-connected in the case of the surface T = 0). The latter assumption is related to the
possibility of a multi-branching in the sense of Landsberg [2, 3]. We discuss in the following
the relevance of this assumption and what can happen by relaxing it. We recall that, if S is
continuous also at T = 0, connectedness of the surface T = 0 is relevant only in the case of
non-homogeneous thermodynamics.

3. Properties of S

We assume an entropy S belonging at least to C1(D) and we consider the following independent
variables: (T , x1, . . . , xn+1).

We assume also the following:

(F) : limT →0+ S exists and is finite at T = 0 for any finite value of x1, . . . , xn+1.

The existence of the limit ensures that S can be uniquely extended by continuity at T = 0,
by hypothesis the set D being dense in its closure. An analogous extension by continuity
is allowed for partial derivatives of S, if they are finite in the limit as T → 0+. The latter
property2 simplifies some mathematical aspects.

Note that, in the case of standard homogeneous thermodynamics, D is a convex set, thus
it is dense in its closure. The extended domain is D ∪ {T = 0}. Moreover, the finiteness of
the entropy at T = 0 is a consequence of the positivity and of the concavity of S [1]. If the
limit of S as T → 0+ does not exist, then (N) is of course violated, as shown in [1].

2 In homogeneous thermodynamics in Gibbsian framework, S cannot be C1 also at T = 0, because ∂S/∂U = 1/T

is surely divergent in the limit as T → 0+. The same is true in Gibbs-like framework for non-homogeneous
thermodynamics where one defines ∂S/∂U = 1/T .
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It is also useful to define

dST ≡ a0(T , x1, . . . , xn+1) dT
(13)

dS⊥ ≡
n+1∑
i=1

ai(T , x1, . . . , xn+1) dxi

which allow us to write dS = dST + dS⊥.
Another important property which has to be discussed is the stability property (a):

Cx1,...,xn+1(T ) > 0 for all T > 0, where Cx1,...,xn+1(T ) is continuous everywhere in the
domain. This property amounts to the requirement that S is a strictly monotonically increasing
function of T. This property is automatically ensured in homogeneous thermodynamics, being
associated with the concavity of the entropy. If it is violated in such a way that non-uniformity
of the sign of the heat capacities along transformation reaching absolute zero is allowed, then
the unattainability (U ) and (N ) in general do not imply each other, thus they can become
essentially inequivalent [10]. See appendix B.

The finiteness condition (F) implies that in a right neighbourhood of T = 0 it holds that

lim
T →0+

Cx1,...,xn+1(T ) = 0. (14)

Equation (14) is a necessary but not sufficient condition for the integrability near T = 0
of Cx1,...,xn+1(T )/T [11] (e.g. Cx1,...,xn+1(T ) ∼ 1/(log(1/T )) → 0+ as T → 0+ gives rise
to a non-integrable function Cx1,...,xn+1(T )/T ). A sufficient condition for the integrability is
obtained if Cx1,...,xn+1(T ) ∼ T δ as T → 0+, where δ > 0 (see also [11]). Note also that (14) is
not a sufficient condition for (N ) [12].

3.1. Heat capacity along a curve

It is useful to recall Clausius’ definition of the entropy variation between two equilibrium
states A, B, which consists in the calculation of the following line integral along a generic
simple oriented curve γ (i.e. reversible transformation) joining A to B:

S(B) − S(A) =
∫

γ A→B

δQrev

T
; (15)

in general, both deformation coordinates and the temperature can be functions of a parameter
α, with γ : xi = xi(α); T = T (α), α0 � α � α1.

If one considers a transformation which does not involve isothermal paths, then one can
write (δQrev)γ = Cγ dT along a path γ (T ) where deformation coordinates are functions of
the temperature T, i.e. γ : xi = xi(T ), T0 � T � T1, so that the line integral above becomes

�S =
∫ T1

T0

dT

T
Cγ (T ) (16)

where Cγ (T ) is assumed to be at least continuous and it is defined by

Cγ =
(

δQrev

dT

)
γ

= T

(
dS

dT

)
γ

= T

(
∂S

∂T

)
xi

+ T
∑

i

(
∂S

∂xi

)
T

(
dxi

dT

)
γ

. (17)

See also [13], p 71, for the definition of the heat capacity along a generic path. Equation (16)
represents an important tool in what follows.

It is also important to note that one can obtain generalized heat capacities in two modes.
One can fix the curve γ (T ) and then calculate the corresponding heat capacity. One can also
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fix a function C(T ) (at least continuous) and wonder if it is possible to find a path γ (T ) such
that Cγ (T ) = C(T ). The latter question has a positive answer at least locally and under rather
general conditions. In fact, by fixing n functions xj (T ) at least of class C1 and by fixing
a continuous function C(T ), the equality Cγ (T ) = C(T ) can be considered as an ordinary
differential equation in the remaining variable xi(T ), and, given the corresponding Cauchy
problem xi(0) = xi

0 one can find at least locally a solution. See also section 5.2, where this
topic is explicitly treated in a special case. In the case of fixed deformation parameters one
fixes the path and obtains Cx1,...,xn+1(T ) which is a function related to the thermal stability
properties of the system.

Note that the deformation parameters are assumed to be finite at T = 0; a priori this
assumption is not necessary in order to get a finite entropy at T = 0 and it is implicit in
the standard treatment of Nernst’s heat theorem, but it is the case to make it explicit herein;
cf [5], in particular the introduction and section IV therein. A discussion on this topic is given
in section 8.

There can be a non-trivial violation of (F) above, which can occur when T → 0+ can be
obtained as U → +∞. This topic is briefly discussed in appendix C.

4. (N) and differential criteria

As is well known, (N ) is equivalent to the requirement that

lim
T →0+

S(T , x1, . . . , xn+1) = �0 (18)

where the value of the constant �0 has to be zero in standard homogeneous thermodynamics
[1]. We recall that, if (N ) holds, then S is continuous at T = 0 (result 1 of [1]). In the following
we consider �0 as a constant with 0 � �0 < +∞.

In the literature, it is assumed that (N ) is equivalent to the requirement that the limit as
T → 0+ of the partial derivatives of S with respect to deformation parameters vanishes,

lim
T →0+

(
∂S

∂xi

)
(T , x1, . . . , xn+1) = 0 ∀i = 1, . . . , n + 1 (19)

for any choice of x1, . . . , xn+1 [14]. We give here some mathematical details allowing us to
see when differential conditions (19) are equivalent to (N ).

4.1. (N) ⇒ (19)

Result 1. Let us assume S(T , x1, . . . , xn+1) ∈ C1(D ∪ {T = 0}) and that (N) holds. Then
(19) follows.

Proof. If (N ) holds then S(0, x1, . . . , xn+1) ≡ �(x1, . . . , xn+1) is constant. This means
that d� = 0 for any point (0, x1, . . . , xn+1) contained in the surface T = 0. If
φ : D ∪ {T = 0} → {T = 0} is the regular map such that T , x1, . . . , xn+1 �→ 0, x1, . . . , xn+1,
then one has �(x1, . . . , xn+1) = S ◦ φ = φ∗S, where φ∗ is the corresponding pullback map.
As a consequence, one has φ∗(dS) = d(φ∗S) = d� (for simplicity, the same symbol d is used
for the differential in the whole domain and the differential restricted to the surface T = 0).
Then, for all i = 1, . . . , n + 1 it holds that(

∂S

∂xi

)
T =0

= ∂�

∂xi
. (20)
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Having S of class C1, by continuity one finds

lim
T →0+

(
∂S

∂xi

)
= ∂�

∂xi
. (21)

Equation (19) is then a consequence of d� = 0, which holds if (N ) holds under the above
hypotheses. �

One can also allow a more general setting. We define, for simplicity of notation, by
L1(U+(0)) the space of the functions f (T , x1, . . . , xn+1) which are integrable in a right
neighbourhood U+(0) of T = 0 for all x1, . . . , xn+1 (in the sense that there exists a
function m(T ) ∈ L1((0, T0]) such that |f (T , x1, . . . , xn+1)| < m(T ) for all x1, . . . , xn+1)
and whose (maybe improper) integral in dT over the interval (0, T ] gives rise to a function of
T , x1, . . . , xn+1 which is continuous also at T = 0. The latter property can, e.g., be ensured
as in the discussion in appendix B of [1].

We assume the following properties:

a0 ≡ ∂S/∂T = Cx1,...,xn+1(T )

T
∈ L1(U+(0)) ∩ C(D) (22)

ai ≡ ∂S/∂xi ∈ C(D ∪ {T = 0}) ∀i = 1, . . . , n + 1. (23)

Note that (22) allows also ∂S/∂T → ∞ in the limit of vanishing temperature3. We
introduce the following definition. A set 	 ⊂ R

k has the polygonal property if for any couple
of points �x0, �x1 ∈ 	, there exists a polygonal curve which joins �x0 and �x1 and which is
piecewise parallel to the coordinate axes. By assuming that the domain D ∪ {T = 0} has the
polygonal property and by using, e.g., variables T , x, y without loss of generality, one can
write

S(T , x, y) − S(T , x0, y0) =
∫ x

x0

dz a1(T , z, y0) +
∫ y

y0

dz a2(T , x, z). (24)

The following result holds:

Result 2. Let us assume that the domain D ∪ {T = 0} has the polygonal property and that
(N), (22) and (23) hold. Then (19) follows.

Proof. By using variables T , x, y without loss of generality, (N ) implies that the right member
of (24) vanishes in the limit as T → 0+. The arbitrariness of x0, x; y0, y implies that

lim
T →0+

∫ x

x0

dz a1(T , z, y0) = 0 (25)

lim
T →0+

∫ y

y0

dz a2(T , x, z) = 0 (26)

(one could choose y = y0 and then choose x = x0); the continuity of the integrals [15] allows
us to write

lim
T →0+

∫ x

x0

dz a1(T , z, y) =
∫ x

x0

dz lim
T →0+

a1(T , z, y) (27)

3 If limT →0+ (∂S/∂T ) exists and is finite and (23) is satisfied, one has that S can be formally extended in such a way
that S ∈ C1(D ∪ {T = 0}). If ∂S/∂T → ∞ is allowed, one has a behaviour similar to that of second-order phase
transitions, where (∂S/∂T ) → +∞ as T → Tc; but the latter divergence corresponds to a divergence in the heat
capacity; instead, as T → 0+, one has a vanishing heat capacity.
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and the same is true for the integral of a2(T , x, y). Then (N ) implies that

lim
T →0+

a1(T , x, y) = 0 (28)

lim
T →0+

a2(T , x, y) = 0. (29)

In fact, let a1(0, x̄, ȳ) > 0. Then, in a neighbourhood A(0, x̄, ȳ) of (0, x̄, ȳ) the function
a1 is positive by continuity. If A � x̄0 < x̄, the function a1(0, x, ȳ), with x ∈ [x̄0, x̄]
and ȳ fixed, is positive and continuous in x and minx∈[x̄0,x̄] a1(0, x, ȳ) ≡ m > 0. Then∫ x̄

x̄0
dz a1(0, z, ȳ) � m(x̄ − x̄0) > 0, against (25). If a1(0, x̄, ȳ) < 0 the proof is

analogous. �

Summarizing, (N ) implies that (19) holds, i.e. all the coefficients of dS⊥ vanish as T → 0+.

4.2. (19) ⇒ (N)

The converse implication is summarized in

Result 3. Let us consider D ∪ {T = 0} having the polygonal property and such that T −1(0)

is connected; Let

dB ≡ b0(T , x1, . . . , xn+1) dT +
n+1∑
i=1

bi(T , x1, . . . , xn+1) dxi (30)

be an exact continuous differential form on D such that the following conditions hold,

b0(T , x1, . . . , xn+1) ∈ L1(U+(0)) ∩ C(D)
(31)

bi(T , x1, . . . , xn+1) ∈ C(D ∪ {T = 0})
and

lim
T →0+

bi(T , x1, . . . , xn+1) = 0 ∀i = 1, . . . , n + 1 (32)

Then

B(T , x1, . . . , xn+1) = B0 +
∫ T

0
dz b0(z, x

1, . . . , xn+1) (33)

where B0 is a constant.

Proof. The proof is trivial. One has that B(T , x1, . . . , xn+1) − B(T , x̄1, . . . , x̄n+1) can be
expressed in terms of integrals with respect to dxi of bi(T , x1, . . . , xn+1). The continuity of
the integrals then implies the thesis. �

Note that these conditions are not rigorously equivalent to (N) as it has to be implemented
in standard thermodynamics, because they still allow transformations γ 0(T ) starting from
T = 0 with non-positive heat capacity Cγ 0(T ) � 0. The stability condition of thermodynamics
Cx1,...,xn+1(T ) > 0 amounts to b0(T , x1, . . . , xn+1) > 0 for T > 0 and forces also the non-
existence of curves starting from T = 0 with negative heat capacity Cγ 0(T ) < 0. See
section 5.1.

Moreover, these differential criteria allow us to find that S is constant on each connected
component of the surface T = 0. For a homogeneous system, limT →0+ S ≡ �0 = 0
and one cannot find two different values of �0 on disconnected branches. If the system is
non-homogeneous, one could a priori find two different entropy constants on two different
branches, in agreement with [2].
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In our discussion above, we have automatically excluded a behaviour analogous to
Wheeler’s counter-example (cf also [10]), where an isentrope reaching T = 0 exists and
(N ) is satisfied (obviously, the standard (U ) is violated). This counter-example is involved
with a violation of Cx1,...,xn+1(T ) > 0, as realized in [5]: indeed, it occurs because Cp = 0 on
an interval (0, T1) [5]. Moreover, a pathological behaviour for the model is due to the fact that
S = 0 is reached at T > 0, which can be considered pathological because of our reasoning in
section 5.4.2 of [1].

It is interesting to see what happens in homogeneous thermodynamics by using extensive
coordinates B,X1, . . . , Xn+1 in the Gibbs frame. One has S = S(B,X1, . . . , Xn+1). We have

∂S

∂B
= 1

T (B,X1, . . . , Xn+1)
(34)

and
∂S

∂Xi
= − ξ̃ i (B,X1, . . . , Xn+1)

T (B,X1, . . . , Xn+1)
(35)

where, by hypothesis, ξ̃ i (B,X1, . . . , Xn+1) are continuous functions for all i = 1, . . . , n + 1
also at the surface T = 0 and vanish there [1]. Condition (22) is replaced by the requirement
that 1/T is integrable near B = 0 and

∫
dB/T gives rise to a continuous function (see [1]). If

∂S/∂Xi = −ξ̃ i (B,X1, . . . , Xn+1)/T (B,X1, . . . , Xn+1) → 0 as B → 0+, in such a way that
ξ̃i/T is continuous also for B = 0, then one can again take the limit as B → 0+ within the
integral

∫
dXiξ̃i/T , and then (N ) holds.

Note also that the latter considerations hold true also in non-homogeneous
thermodynamics in the Gibbs-like framework sketched in section 2.2, if the analogous B
coordinate can be defined.

4.3. Counter-examples against a too naive use of the differential criteria

It is remarkable that, if one relaxes (23) for the entropy, then (N ) can hold even if condition
(19) is violated. We give an example in the following, in which we focus on mathematics
rather than on physical meaning. A toy model can be as follows,

S(T , V,M) = T (V + c
√

V M) (36)

where M is an extensive variable such that M � 0, V > V0 > 0 and c is a constant. One can,
e.g., think that M is the magnetization. One finds

CV M

T
= V + c

√
V M

∂S

∂V
= T

(
1 +

c

2

√
M

V

)
(37)

∂S

∂M
= T

c

2

√
V

M

the partial derivative ∂S/∂M diverges in the limit as M → 0 and it is not continuous in
(0, V , 0). There is no contradiction with the previous discussion, in fact in the above example
condition (23) is clearly violated, even if only on a zero measure set. This is an interesting
signal that the failure of (19) does not automatically mean that (N ) is violated. Equation (19)
is a stronger condition (required, e.g., in [14]). An example of this kind of behaviour for
random spin systems is given in [16], where (N ) is preserved and (19) is violated because
of the non-vanishing of ∂χ/∂T (χ is the susceptibility) for T → 0+ and the magnetic field
H → 0.
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5. Condition (Π)

We introduce here a condition which is equivalent to (N ). This condition involves a discussion
of the sign of the heat capacity along a generic transformation in a neighbourhood of T = 0.
A priori, it is not necessary that the heat capacity along a generic transformation is positive. The
presence of Cγ < 0 in standard thermodynamics does not contradict the concavity property of
the entropy, which requires that the heat capacity along transformations at constant deformation
parameters is positive. Along generic transformations at non-constant deformation parameters,
the heat capacity can be negative without violating any stability criterion. One can consider,
e.g., the polytropic transformations T V z−1 = const of an ideal gas, whose specific heat is
negative when the polytropic index z is strictly contained in the interval (1, cp/cv) [2]. As is
known, ideal gases satisfy stability criteria.

We introduce the following condition, which is shown to be equivalent to (N):

Condition (�). For any point
(
0, x1

0 , . . . , xn+1
0

)
belonging to the surface T = 0 and for any

reversible transformation γ 0(T ) which is parametrized by T and starts at
(
0, x1

0 , . . . , xn+1
0

)
,

the heat capacity Cγ 0(T ), which is assumed to be a continuous function of T and such that
Cγ 0(T )/T is integrable near T = 0, becomes positive in the limit as T → 0+, i.e. there exists
a neighbourhood (0, Tε(γ

0)) where Cγ 0(T ) > 0 and

lim
T →0+

Cγ 0(T ) = 0+. (38)

We note that Tε(γ
0) depends in general on the curve γ 0 connected to T = 0; the integrability

of Cγ 0(T )/T is imposed in order to obtain a finite entropy at T = 0. Then, integrability
implies that Cγ 0(T ) → 0 as T → 0 has to hold, and the latter condition is much weaker
than (38).

Condition (�) can be considered natural in standard thermodynamics, because it matches,
at least near T = 0, the condition of positivity for heat capacities in transformations at constant
deformation parameters. This condition, to some extent, corresponds to the original proposal
of Nernst. In fact, Nernst also linked his heat theorem to the vanishing of the heat capacities
as T → 0+ [17] (cf also [18]). Actually, the condition to be imposed is (�), which is much
stronger than the simple vanishing of the heat capacities at constant deformation parameters
as T → 0+, and requires, in order to ensure (N ), some further topological condition. Note
also that it is assumed that γ 0(T ) does not contain any isothermal sub-path in order to get a
well-defined heat capacity; this restriction does not imply a loss of generality, because we are
interested in the behaviour of paths leaving the surface T = 0. Moreover, it is not necessary
that Cγ 0(T ) > 0 holds for any finite T > 0 (which would be, in general, false), it simply
requires that, near T = 0, all heat capacities along curves connected to T = 0 become
positive. A detailed discussion is found in the following subsections. Note also that this
condition forbids the existence of the isentropic transformations allowing T = 0 to be reached
(for these transformations it holds that Cγ 0(T ) = 0).

5.1. Condition (�) versus (N)

We start by discussing the relation between (N ) and condition (�); we show that (N ) ⇔ (�).
We work in a framework where homogeneity can be removed. A relevant role is played
by the stability condition, the validity of (39) everywhere and also the existence for each
point

(
0, x1

0 , . . . , xn+1
0

)
belonging to the surface T = 0 of a rectangular neighbourhood

[0, T0) × I1 × · · · × In+1, where Ii is an interval for each i = 1, . . . , n + 1 and
(
x1

0 , . . . , xn+1
0

)
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is an inner point of I1 × · · · × In+1.4 Note also that, in the standard homogeneous case as
realized in section 2.1, these conditions are implemented.

5.1.1. (N) ⇒ (�). We begin from the easy part of the double implication:

Result 4. Let us assume that S ∈ C1(D) and that

S(T , x1, . . . , xn+1) = �0 +
∫ T

0

dz

z
Cx1,...,xn+1(z) (39)

holds in D. Moreover, let us assume the thermal stability property

Cx1,...,xn+1(T ) > 0 ∀T > 0 and ∀x1, . . . , xn+1. (40)

Then (�) holds.

Proof. For any choice of T , x1, . . . , xn+1 one has

S(T , x1, . . . , xn+1) � �0 (41)

and

S(T , x1, . . . , xn+1) > �0 ∀T > 0 and ∀x1, . . . , xn+1 ∈ D. (42)

As a consequence, there is no (piecewise C1) oriented simple curve γ 0 in D reaching T = 0
such that Cγ 0 � 0 in a right neighbourhood of absolute zero, because, contrarily, one should
have for T > 0 sufficiently near T = 0

S(γ 0(T )) = �0 −
∫ T

0

dz

z
|Cγ 0(z)| < �0 (43)

which is impossible because of (42). At the same time, an isentrope Cγ 0 = 0 connected to
T = 0 is also impossible, because of (42). �

For the case where (N ) holds with �0 = 0, one can also remove the assumption of the
validity of the formula (39) everywhere. In fact, S gets its absolute minimum S = 0 at T = 0
and S = 0 cannot be allowed elsewhere (cf [1] for the homogeneous case). Then, from

S(γ 0(T )) =
∫ T

0

dz

z
Cγ 0(z) > 0 (44)

one finds that (�) has to hold. The requirement for the validity of (40) can also be
limited to T ∈ (0, Tε). This condition means that S is a strictly monotonically increasing
function of T for T ∈ (0, Tε). Then one finds that (43) is impossible and that an adiabatic
reversible transformation Cγ 0 = 0 reaching T = 0 cannot occur, and, moreover, that
S(T , x1, . . . , xn+1) > �0 for all T ∈ (0, Tε) and for all x1, . . . , xn+1.

5.1.2. The hard part: (�) ⇒ (N). We preliminarily point out that the non-existence of a γ 0

such that Cγ 0 < 0 is a necessary condition for the validity of (N ) in the case of a homogeneous
system with S � 0. In fact, let us assume that such a curve exists; then, one has

S(T , x1(T ), . . . , xn+1(T )) =
∫ T

0

dz

z
Cγ 0(z) + S

(
0, x1

0 , . . . , xn+1
0

)
< S

(
0, x1

0 , . . . , xn+1
0

)
. (45)

Then, one surely has S
(
0, x1

0 , . . . , xn+1
0

)
> 0. Because of the homogeneity, the entropy

S
(
0, x1

0 , . . . , xn+1
0

)
> 0 cannot be a constant independent of the deformation parameters

4 This can be obtained, e.g., if there exists a neighbourhood of the form [0, T0)×W0 where W0 ⊂ R
n+1 is a spherical

neighbourhood centred in (x1
0 , . . . , xn+1

0 ).
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x1, . . . , xn+1 (or such a constant should be zero). As a consequence (N ) has to be violated and
the range of S at T = 0 is an interval. One could still allow a single isentrope S = 0 to reach
T = 0. But we consider such behaviour as pathological, and, moreover, impossible if a strict
concavity Cx1,...,xn+1(T ) > 0 for T > 0 holds (and also when (1) is assumed; cf [1]).

As far as the thermal stability condition is concerned, we show in the following subsection
that it is not a necessary condition to be required with (�) in order to obtain (N ). Nevertheless,
it holds in homogeneous thermodynamics and it allows us to obtain a simple proof of the
above implication. Note also that (�) has to hold also for constant deformation coordinates,
which implies that, for any fixed x1

0 , . . . , xn+1
0 , there exists a Tε

(
x1

0 , . . . , xn+1
0

)
> 0 such that

Cx1
0 ,...,xn+1

0
(T ) > 0 in

(
0, Tε

(
x1

0 , . . . , xn+1
0

))
(a sort of ‘ultra-local’ stability condition). We do

not use this condition herein, we limit ourselves to point out that in the following proof the
stability condition (40) can be replaced by Cx1,...,xn+1(T ) > 0 for all T ∈ (0, Tε) and for all
x1, . . . , xn+1.

Result 5. Let us assume the following: S ∈ C1(D)∩C(D∪{T = 0}); condition (�) holds; the
stability condition (40) holds; {T = 0} is connected and any point at T = 0 has a rectangular
neighbourhood. Then (N) follows.

Proof. We show that a violation of (N ) implies a violation of (�). Let us assume that (N ) is
violated. We point out that if T = 0 is not connected, the following considerations hold for
each connected component of T = 0 where S is not constant. Then in (the aforementioned
connected component of ) T = 0 there exists

(
0, x1

0 , . . . , xn+1
0

)
which is not a local minimum

for S. In fact, the range of �
(
x1

0 , . . . , xn+1
0

) ≡ S
(
0, x1

0 , . . . , xn+1
0

)
is an interval (�0, �1) and

it is easy to show that this implies that there are points which are not local minima for S. We
sketch the proof in appendix D.

From the analysis carried out in [1], we know that in standard thermodynamics, if (N )
is violated, there exists an isentropic surface reaching T = 0. In a more general setting,
one can introduce σ0(T , x1, . . . , xn+1) ≡ S(T , x1, . . . , xn+1) − S

(
0, x1

0 , . . . , xn+1
0

)
, which is a

continuous function monotonically strictly increasing in T because of Cx1,...,xn+1(T ) > 0. A
variant of the implicit function theorem, which can be implemented by following step by step,
with obvious changes, the proof in section 5.6 of [1], shows that, if

(
0, x1

0 , . . . , xn+1
0

)
is not

a local minimum for S, there exists a unique continuous function T (x1, . . . , xn+1) such that
σ0(T (x1, . . . , xn+1), x1, . . . , xn+1) = 0 in a neighbourhood of

(
0, x1

0 , . . . , xn+1
0

)
and such that

T
(
x1

0 , . . . , x
n+1
0

) = 0. Then, such a surface allows the existence of curves reaching T = 0
with Cγ 0 = 0. As a consequence, (�) is violated. �

Note that the topological condition to be satisfied in order to give meaning to condition
(�) consists in the possibility of accessing points at T > 0 from

(
0, x1

0 , . . . , xn+1
0

)
. This

condition is trivially satisfied if the domain is convex, because any inner point can be reached
from any other point belonging to the boundary T = 0 along segments. By relaxing convexity
of the domain, one can still obtain this property by requiring that each point of the boundary
has a rectangular neighbourhood (sufficient condition). Contrarily, it is easy to construct a
counter-example where (�) holds but (N ) is violated (e.g., consider a continuous S(T , x) such
that S(0, x) = x for x ∈ (x0, x1) and S(T , x) = T x + S0 for x � x1 and for T > 0, with
S0 = x1). But states

(
0, x1

0 , . . . , xn+1
0

)
from which it is not possible to reach directly other

states at T > 0 are not allowed in our hypotheses (they seem to be also unphysical).
One could object that the requirement for S to get a constant value at the hypersurface

T = 0 could be satisfied even by allowing Cγ 0 < 0. Note again that this objection cannot
be applied to the homogeneous case because S = 0 is necessarily a global minimum for S.
Moreover, stability condition Cx1,...,xn+1(T ) > 0 does not allow, even in a non-homogeneous
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case, to reach values S(T , x1, . . . , xn+1) < �0, where �0 is the entropy constant at T = 0
(cf equation (39)). By relaxing both Cx1,...,xn+1(T ) > 0 (at least near T = 0) and homogeneity,
the toy-model function S(T , x) : [0, T1)×(x0, x2) → R, defined by S(T , x) = T (x1−x)+�0,
where x2 > x1 > x0 and �0 � T1(x2 −x1) is a non-negative constant, satisfies (N ) and allows
a violation of (�) for x1 � x < x2.

5.2. Condition (�) and differential equations

We show that the theory of ordinary differential equations can be used in order to show that
a violation of (N ) implies a violation of (�) and in order to find the relation with differential
conditions. Moreover, we show that the stability condition is not essential in order to show
that (�) ⇒ (N ). We assume that (22) and (23) hold. Herein, the existence of a rectangular
neighbourhood for points belonging to T = 0 matches the hypotheses of existence theorems
for solutions of ordinary differential equations used in the following. Our main result is

Result 6. Let us assume the following: condition (�) holds; (23) and (22) hold; {T = 0} is
connected and any point at T = 0 has a rectangular neighbourhood. Then (N) follows.

Proof. Let us introduce �n ≡ (dx1/dT , . . . , dxn+1/dT ) and �∇S ≡ (∂S/∂x1, . . . , ∂S/∂xn+1).
Then, we have

dS

dT
= ∂S

∂T
+ �n · �∇S. (46)

Condition (�) requires that

T
dS

dT
→ 0+ as T → 0+ (47)

whichever path starting from T = 0 is chosen. One finds
T dS/dT

T ∂S/∂T
= 1 + (�n · �∇S)

1

∂S/∂T
. (48)

(�) can be implemented only if �∇S → 0, and this implies that (N ) has to hold. In fact, let
us assume, e.g., that ∂S/∂x1 does not vanish as T = 0 is approached, which means that (N )
is violated, and let us keep all the other xj fixed. Then, if η(T ) ∈ L1((0, T0]) is a negative
definite function such that

Cγ 0(T ) ≡ T η(T ) (49)

by choosing

n1 = − 1

∂S/∂x1
(|η(T )| + ∂S/∂T ) ≡ h(T , x) (50)

condition (�) can be violated. Equation (50) is a differential equation (n1 = dx1/dT by
definition) and a Cauchy problem with initial condition x1(0) = x1

0 can be defined. Under the
hypotheses (22), (23) one finds that h(T , x) is a measurable function satisfying the hypotheses
of the Carathéodory theorem on ordinary differential equations [19] (even the conditions of
the Peano theorem if ∂S/∂T and η(T ) are continuous functions at T = 0), thus a local
solution exists for the corresponding Cauchy problem with initial point x1(0) = x1

0 such that
∂S/∂x1

(
0, x1

0 , . . . , xn+1
0

) �= 0, against condition (�). The same is true in the more general
setting where xj (T ) ∈ C1([0, T1]) for j �= 1 are fixed functions. Also isentropes reaching
T = 0 can be found (by putting η = 0) if (N ) is violated. �

Under our hypotheses, the condition ∂S/∂x1
(
0, x1

0 , . . . , xn+1
0

) �= 0 means that(
0, x1

0 , . . . , xn+1
0

)
is not a local minimum for S. As an (maybe oversimplified but still
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meaningful) example of the relevance of the condition for
(
0, x1

0 , . . . , xn+1
0

)
not to be a local

minimum in order to solve the Cauchy problem, let us consider S(T , x) = cT + (x − x0)
2,

with c > 0 and x, x0 > 0. It is evident that (0, x0) is the absolute minimum of S. One has
∂S/∂x = 2(x − x0) and ∂S/∂T = c > 0. Let us choose η(T ) = −1. Then, let us consider
the Cauchy problem(

dx

dT

)
= − 1

2(x − x0)
(1 + c) x(0) = x1. (51)

If, e.g., x1 > x0, then x(T ) = x0 +
√

(x1 − x0)2 − (1 + c)T solves the problem (51) for
0 � T � (x1 − x0)

2/(1 + c); if, instead, x(0) = x0, then ∂S/∂x vanishes as x → x0 and there
is no solution of the Cauchy problem (51).

We point out that, if (N ) holds, the equation Cγ 0(T ) = 0 cannot have solutions where all
the xi(T ) are finite in the limit as T → 0+; cf section 5.6 in [1].

We find that a violation of (N) implies a violation of (�), with no reference to the thermal
stability condition.

It can also be noted that, if thermal stability is violated, then (N) can still hold if �∇S vanishes
as T → 0+ (see result 3), but (�) is violated and (N) �⇒ (�).

5.3. Condition (�) and heat

A comment about the meaning of condition (�) in terms of the heat that the system can
exchange is in order. Condition (�) implies that, for any curve γ 0 connected to T = 0, there
is a right neighbourhood [0, Tε(γ

0)) of absolute zero such that Cγ 0(T ) > 0. Then in the same
neighbourhood

Qγ 0 =
∫ Tε(γ

0)

0
dT Cγ 0(T ) > 0. (52)

As a consequence, in order to leave the surface T = 0 it is necessary to supply heat to the
system, whichever reversible transformation is chosen in the thermodynamic space. (Note
that, for any Tε > 0, no matter how near T = 0, there exists the possibility of extracting heat
from the system along the isotherm T = Tε . Thus, it would be incorrect to say that there
exists a right neighbourhood of T = 0 where heat cannot be extracted from the system.) We
have also shown that, if (N ) is violated, under suitable hypotheses it is, in principle, possible
to get Cγ 0(T ) < 0.

According to the first law,

�Uγ 0 = Qγ 0 − Wγ 0 (53)

the system can transfer energy via the macroscopically observable modes of motion (work
term W ) and via the hidden atomic modes of motion (heat term Q) [20]. The extraction of
energy by means of heat Qγ < 0 implies the subtraction of energy as an effect of microscopic
‘disordered’ interactions of the system with its environment5. As a consequence of condition
(�), the hidden atomic modes of motion can allow only a transfer of energy into the system
if one starts from T = 0. This fact could be interpreted by saying that hidden atomic
modes of motion are frozen at T = 0 and that an hindrance against any extraction of heat
from the system occurs if a state at T = 0 has to be left, as is to some extent natural
5 In, e.g., [21], the process of heat flow is described in microscopic terms as a ‘diffusive’ energy release, by means
of microscopic molecular collisions, between nearby regions and at the interface system–environment. Heat could be
naively interpreted also as mean microscopic ‘disordered’ work associated with molecular collisions, which should
represent the mean ‘disordered’ work contribution of hidden microscopic modes of motion.
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and expected: there is no ‘thermal motion’ at absolute zero and one has to supply heat to the
system in order to ‘turn on’ hidden atomic modes of motion and in order to reach a state at
T > 0.

The violation of (N ), instead, would imply that heat can be extracted from a system when
it leaves a state at T = 0, that is, some microscopic degrees of freedom should still be able to
release energy via hidden modes of motion without any previous heat supply to the system.
Moreover, states at T > 0 could also be reached adiabatically; because of the peculiar nature
of the surface T = 0 to be an adiabatic surface, adiabatic inaccessibility would be jeopardized
by the intersection of the aforementioned adiabatic and non-isentropic surface T = 0 and
isentropic surfaces occurring at T > 0 [1].

The aforementioned release of heat could be plausible in the case of glassy substances
(for details on this topic see, e.g., [13, 22, 23]), where there are frozen non-equilibrium
states which could be implied in such a heat release. It is to be noted, however, that glassy
substances, and, in general, phenomena which would imply a violation of the third law because
of ‘frozen-in disorder’ at T = 0 [13], actually violate Gibbs’ requirement of “balance of the
active tendencies of the system” (quoted from [13]) for equilibrium states (they are actually
characterized by non-equilibrium states in which “passive forces or resistances to change”
[13] appear), so that no true violation of the third law appears. However, on this topic there
is controversy, an opposite opinion is expressed, e.g., in [23] and also in [24], section 61b.
We wish also to recall that the third law limT →0+ S = 0 has been assumed as a fundamental
operational criterion for the definition of ‘equilibrium state’ by Tisza [25]. In general, it is
not hard to figure a ‘release of energy from systems at T = 0’ where the energy is released
by means of a ‘disordered microscopic transfer mechanism’ (heat). One could, e.g., consider
a statistical ensemble at T = 0 of radioactive nuclei decaying with the appropriate statistical
law; the corresponding decays could give rise to a release of energy which could be considered
‘heat’ (in fact it is associated with ‘collisional work’). It is to be noted that the transformation
is irreversible and also that the initial state cannot be considered as a true equilibrium state
according to the definition by Gibbs (it is associated with an intrinsic instability). Anyway,
exotic thermodynamics could also be involved in a violation of (�) and of (N ) without
invoking frozen-in disorder6. (For such an exotic thermodynamics, one could also introduce
the opposite of condition (�) for ensuring (N ), i.e. the requirement that Cγ 0(T ) < 0 for
T ∈ (0, Tε(γ

0)) for all γ 0(T ). Changes in the previous proofs are obvious).
Summarizing, we can rephrase the third law also as follows:

For any physical system it is impossible to leave a thermodynamic equilibrium state belonging
to the surface T = 0 without heat absorption, whichever reversible transformation γ 0(T )

starting at T = 0 is considered.

In the latter version, the third law is again stated in the form of a ‘law of impotence’ [24] as
in its standard unattainability version (U ). Note also that the aforementioned impossibility,
according to condition (�), implies the impossibility of performing an adiabatic reversible
path reaching T = 0.

5.4. A geometrical characterization of condition (�)

The heat capacity along a generic curve is simply the contraction of the differential form δQrev

with the tangent vector γ̇ along the generic thermodynamic transformation γ ; the preferred
parameter for γ is the temperature T, but there is no problem if a generic parametrization
6 In black hole thermodynamics, the violation of (N ) is evident and ‘subtraction of heat from T = 0’ is, in principle,
possible; there is no definitive indication about the microscopic degrees of freedom involved.
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is assumed. In fact, a change in parametrization amounts simply to considering T = T (τ),
where τ is a new parameter. By starting at T = 0, it is natural to get T (τ) as an increasing
function. The Pfaffian form δQrev = dU − ∑

i ξi dxi under the map U �→ T becomes

δQrev = ∂U

∂T
dT +

∑
i

(
∂U

∂xi
− ξi

)
dxi

= Cx1,...,xn+1(T ) dT +
∑

i

T

(
∂S

∂xi

)
dxi. (54)

The tangent vector γ̇ can be written as

γ̇ = ∂T +
∑

i

dxi

dT
∂xi . (55)

By contracting γ̇ with δQrev one obtains

δQrev(γ̇ ) = Cx1,...,xn+1(T ) +
∑

i

T

(
∂S

∂xi

)
dxi

dT
(56)

which is, obviously, coincident with(
δQrev

dT

)
along γ

. (57)

As a consequence, it coincides with the heat capacity along the given curve: Cγ (T ) =
δQrev[(γ̇ )]. Condition (�) requires that limT →0+ δQrev[(γ̇ 0)] = 0+. It is evident that (N)
implies that the entropy S can only increase in leaving T = 0 and that one can only furnish
heat to the system in order to perform such an operation. The converse is also true, as we have
shown in the previous section.

6. Condition (Π) in the Gibbsian frame

Let us consider the frame where B,X1, . . . , Xn+1 are the independent coordinates of the
thermodynamic space, both in homogeneous thermodynamics and in non-homogeneous
thermodynamics. Given a simple oriented C1 curve γ (τ) : [0, 1] → D and its tangent
vector

Z ≡ dB

dτ
∂B +

∑
i

dXi

dτ
∂Xi (58)

one can define the (at least continuous) function

Kγ (τ) = δQrev(Z) (59)

which is such that

S(γ (τ)) = S(γ (0)) +
∫ τ

0
dτ

Kγ (τ)

T (τ)
. (60)

Kγ plays a role analogous to the role of Cγ in (16). It is useful to use B as a curve parameter
(one can also use a parameter τ ∈ [0, 1] with (dB/dτ) > 0 and B(τ = 0) = 0 if a curve
starting from a state at T = 0 is considered; what follows holds true). Then, given a curve
γ (B), we find its tangent vector

ZB = ∂B +
∑

i

dXi

dB
∂Xi (61)
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and Kγ (B) = δQrev(ZB) = 1 − ∑
i ξ̃i (dXi/dB). For a curve γ 0 : [0, B0] → D ∪ {T = 0}

one has

S(γ 0(B0)) = S(γ 0(0)) +
∫ B0

0
dB

Kγ 0(B)

T (B,X1(B), . . . , Xn+1(B))
. (62)

One has to require that Kγ 0(B)/T (B,X1(B), . . . , Xn+1(B)) is integrable near B = 0. We
assume that Kγ 0(B) is at least continuous, even at B = 0. The above integrability is then
implemented. In fact, 1/T is integrable in B = 0 in order to obtain a finite entropy at B = 0
(for any B and any X ≡ X1, . . . , Xn+1 it holds that S(B,X) = S(0, X) +

∫ B

0 dY (1/T (Y,X)),
where the integral function is required to be continuous; see, e.g., appendix B of [1]). Note
also that Kγ 0(B) = 0 corresponds to an isentropic path leaving T = 0. Moreover, for any
γ 0(B) such that (dXi/dB) is finite as B → 0+ for all i = 1, . . . , n + 1, one finds Kγ 0(B) → 1
in that limit. There is no problem in allowing a non-vanishing Kγ 0(B) in the limit as B → 0+.

Condition (�) can be translated into

Condition (�̄). For any simple curve γ 0(B) starting at whichever point of the surface
B = 0 and such that Kγ 0(B) is continuous there exists a neighbourhood (0, Bε(γ

0)) where
Kγ 0(B) > 0.

This means that a system at T = 0 has to absorb heat in order to reach a state at T > 0. The
double implication between (�̄) and (N ) is very natural, and gives rise to the following result:

Result 7. Let us assume the following: S ∈ C1(D) ∩ C(D ∪ {T = 0}); γ 0 : [0, B0] →
D ∪ {T = 0} is any simple oriented curve parametrized by B and such that its tangent vector
ZB is at least continuous in [0, B0]. Then (�̄) is equivalent to (N).

Proof. If (N ) holds, one has that for any B,X it holds, with S(0, X) = �0 because
of (N ) and S(B,X) > �0 for any B > 0 due to strict monotonicity of S in B (in fact,
∂S/∂B = ∂S/∂U = 1/T > 0). Condition (�̄) is then easily deduced as in the previous
section. Note that strict monotonicity of S in B has replaced the stability condition. The
implication (�̄) ⇒ (N ) is obtained by showing that, if S is continuous at T = 0 and T = 0 is
connected, a violation of (N ) implies a violation of (�). The proof consists in showing that a
violation of (N ) implies the existence of isentropic paths reaching T = 0, and it is the same
as in section 5.6 of [1]. Again, strict monotonicity of S in B plays an important role. �

7. Minimum entropy at T = 0

In the standard approach to Nernst’s heat theorem in homogeneous thermodynamics, the
entropy S goes to a finite minimum as T → 0+, as it can be easily deduced from the S–T
diagrams. This minimum does not depend on the deformation parameters. It is also stated
that the entropy of any given system attains the same finite least value for every state of least
energy [24, 26].

We call min(S) the following condition of minimum entropy at T = 0,

S(T ,X1) � S(0, X2) ∀T � 0, X1, X2 (63)
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where X ≡ x1, . . . , xn+1. This condition amounts to a condition of absolute minimum for S at
T = 0.

Result 8. Let us assume that D ∪ {T = 0} = IT × K (cf. section 2), S belongs to
C1(D) ∩ C(D ∪ {T = 0}) and it is a monotonically strictly increasing function of T. Then
min(S) ⇔ (N).

Proof. We first show that min(S) ⇒ (N ). In fact, one has S(0, X2) � S(0, X1), and also
S(0, X1) � S(0, X2). Thus, (N ) holds. Strict monotonicity in T does not allow us to obtain
states at T > 0 such that S(T ,X) = S0 = S(0, Y ). The converse implication (N ) ⇒ min(S)

follows trivially from S(T ,X) > S0 for all T > 0 and for all X; cf equation (39). �

Note that if (N ) is violated, S is continuous and T −1(0) is connected, then S(0, X)

depends on X in such a way that there exist points (0, X0) which are not local minima (see
appendix D), against min(S). Note also that this condition does not require homogeneity.

One could obtain the above equivalence under the weaker condition

minL(S): S(T ,X1) � S(0, X2) for all T ∈ [0, Tε) and for all X1, X2.

This ‘local’ condition is called minL(S) and implies (N ) if a neighbourhood for any point (0, X)
exists, S ∈ C1(D) ∩ C(D ∪ {T = 0}) and strict monotonicity of S in T holds for T ∈ (

0, T 1
ε

)
(even with T 1

ε < Tε). (N ), the existence of a rectangular neighbourhood for any point
(0, X) and the aforementioned strict monotonicity in T imply minL(S). Condition minL(S)

could also allow an absolute minimum at T > 0. Nevertheless, this weaker condition
coincides with the above one in homogeneous thermodynamics. Moreover, on a connected
thermodynamic domain, the requirement for the isentropic surfaces S = const to be path-
connected does not allow us to find a local minimum at T = 0 which is not a global minimum;
in fact, it would belong to a surface S = const but no isentropic path could reach it [1]. Note
also that an absolute minimum of the entropy at T > 0 would be pathological in the same
way as S = 0 at T > 0 is pathological in homogeneous thermodynamics, because heat can be
only absorbed in a neighbourhood of this point by the system; see [1, 6].

A further weaker condition is

locmin(S): each point of the surface T = 0 is a local minimum for S and S(T ,X) > S(0, X)

for all T ∈ (0, Tε) and for all X, X0.

(The latter condition is implemented if, e.g., S ∈ C1(D) ∩ C(D ∪ {T = 0}), T −1(0) is
connected, a rectangular neighbourhood for any point (0, X0) exists and strict monotonicity in
T holds for T ∈ (0, Tε).) This weaker condition is called locmin(S). One has

Result 9. Let us assume the following: S belongs to C1(D) ∩ C(D ∪ {T = 0}); T −1(0) is
path-connected. Then locmin(S) ⇒ (N).

Proof. The implication is a consequence of result 10 in appendix D. �

We recall that, with reference to the surface T = 0, we use ‘connected’ and ‘path-
connected’ interchangeably, in the sense that we assume that when T = 0 is connected it is
also path-connected, and the same is true for each connected component.

The converse implication can be obtained easily: (N) the existence of a rectangular
neighbourhood for any point (0, X) and strict monotonicity of S in T for T ∈ (0, Tε) imply
locmin(S).
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One can also work in regular coordinates B and X ≡ X1, . . . , Xn+1 introduced in
section 2.2 and impose that S(B,X1) � S(0, X2) for all B � 0, X1, X2. (N ) again follows.
One finds that strict monotonicity in B is ensured by ∂S/∂B = ∂S/∂U = 1/T > 0.

Note also that, if CX(T ) < 0 is allowed for T ∈ (0, Tε), i.e., if S is monotonically
strictly decreasing in T for T ∈ (0, Tε), then min(S) can be replaced with max(S):
S(T ,X1) � S(0, X2) for T ∈ (0, Tε) and for all X1, X2. Moreover, if (N ) holds when
CX(T ) < 0 is allowed for T ∈ (0, Tε), then the thermodynamic domain cannot be such that
the coordinate B can be introduced (in fact, S(B,X) > S(0, X) ≡ �0 for all X), and

S(U,X) = �0 +
∫ U

U0

dY
1

T (Y,X)
(64)

where T (U0, X) = 0, makes sense only for U < U0. See also appendix C. In the case where
B can be defined, the presence of Cγ 0 negative near T = 0 means that (N) is violated. This
happens, e.g., in the case of black holes [10].

8. The case of infinities in deformation parameters

If one relaxes the requirement of finite deformation parameters in the limit as T → 0+, then
(N ) can be easily violated, in the sense that the limit of S as T → 0+ can be made dependent on
the deformation parameters and, e.g., violate Planck’s restatement in standard homogeneous
thermodynamics; see [5]. This violation of (N ) can be obtained e.g., by requiring that the
volume V is a divergent function V(T) of T in the limit as T → 0+. The volume can, e.g., be
allowed to diverge as a positive power of 1/T in that limit. In general, this kind of limit as
T → 0+ can be taken along curves γ (T ) where at least one deformation parameter diverges.
The result of the limit limT →0+ S depends on which kind of divergence of the deformation
parameter as T → 0+ is assumed. In this sense, there is dependence of the limit on the
diverging deformation parameter. In any case, (U ) holds and it can be considered to be
implemented as (U4) unattainability [2] (i.e., the state cannot be reached in any case, not
only because it is not adiabatically linked with other states of the system), because infinities
in deformation parameters appear to be actually non-implementable and, moreover, they are
unphysical. As a consequence, we limit ourselves to considering an example in homogeneous
thermodynamics.

We sketch an example concerning S = V T 3 (‘Debye model’). Let us consider the curve
γ in the (V , T )-plane V (T ) = a0T

−3 + a1T
−2, where a0 > 0 and a1 are constants. Then,

for the Debye model, one finds S → a0 along γ . Any finite positive value for S in the
limit as T → 0+ is allowed by changing a0, and Planck’s restatement is violated. Moreover,
Cγ (T ) = a1T . If a1 < 0, then Cγ (T ) < 0 in a right neighbourhood of T = 0. Isentropic
paths approaching T = 0 are allowed (for a1 = 0) but they cannot be performed for reaching
T = 0 and (U4) holds. Moreover, for V (T ) = a2T

−4 one finds that S diverges as T → 0+.
As clearly stated by Landsberg [2], a decoupling between the validity of (U4) and the

validity of (N ) occurs, as also appears from the present analysis. Moreover, if infinities in
the deformation parameters are allowed, then any value of S and any divergent behaviour can
be allowed. A further note is that the thermodynamic limit of statistical mechanics does not
imply an ‘interference’ between the limit as V,N → +∞ and the limit as T → 0+ in such a
way that (N ) can be jeopardized as above; in fact, the limit as T → 0+ has to be taken after the
thermodynamic limit is implemented, as remarked by Griffiths [27]. One has first to ensure
that a thermodynamic system is at hand, which is obtained by taking the thermodynamic limit;
only then can one consider the limit as T → 0+. See also [1] and references therein.
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9. Notes on phase coexistence and on mixtures

This case is more difficult, we limit ourselves to the case of standard thermodynamics, for
which a set-up of a general framework should require a further analysis. Let us first assume
that, for a two-phase one-component system, the coexistence domain of two phases I and II
can arbitrarily approach the absolute zero of temperature. The latent heat associated with the
phase transition is QI→II = �H I

II = Ttransition�SI
II. It has to vanish as T → 0+ (see e.g. [28]).

As far as the entropy is concerned, in the presence of a first-order phase transition, there is a
discontinuity in the molar entropy of the two phases. Moreover, the third law for each phase
implies that

lim
T →0+

�SI
II = 0. (65)

The latter result is usually stated as the vanishing of entropy differences along any isothermal
reversible process. It is well known that, at the phase coexistence, the Clapeyron–Clausius
equation holds,

�SI
II = −�V I

II

(
dp

dT

)
coex

. (66)

From (65) it follows that

lim
T →0+

(
dp

dT

)
coex

= 0. (67)

Equation (67) can also be seen as a consequence of a continuity boundary condition for
thermodynamics at T = 0 introduced in [1]. An apparent exception to the vanishing of the
latent heat as T → 0+ seems to be represented by sublimation latent heat of several substances
[29]. Actually, even if the molar latent heat does not vanish in the limit as T → 0+, the third
law is preserved, because the number of particles in the gas phase vanishes very rapidly in the
limit as T → 0+, thus the corresponding entropy vanishes and, a fortiori, T �S vanishes and
no sublimation occurs at absolute zero [29].

A more complex situation appears if one allows for two thermodynamic degrees of
freedom [20] at the phase coexistence. This can happen, e.g., when for a two-component
mixture two phases are allowed. In fact, according to Gibbs’ phase rule, the coexistence
region is a two-dimensional submanifold (f = 2 [20]). In this case, by choosing (p, T ) as
independent variables, one finds that the molar fraction X ∈ [0, 1] of the second component
becomes a function of (p, T ) instead of being a third independent variable as in the presence of
a single phase (f = 3). In the following, X(1), X(2) indicates the molar fraction of the second
component in phases (1) and (2) respectively. An analogous notation is used for indicating the
phase one is referring to. Note also that X = X(1) + X(2). From the van der Waals equation
[30], one obtains

∂X(1)

∂T
= − S21

X(2) − X(1)

1

(∂2G(1)/∂(X(1))2)
(68)

∂X(2)

∂T
= − S12

X(1) − X(2)

1

(∂2G(2)/∂(X(2))2)
(69)

∂X(1)

∂p
= +

V 21

X(2) − X(1)

1

(∂2G(1)/∂(X(1))2)
(70)

∂X(2)

∂p
= +

V 12

X(1) − X(2)

1

(∂2G(2)/∂(X(2))2)
(71)
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where the following expressions

S21 ≡ (S(2) − S(1)) − (X(2) − X(1))
∂S(1)

∂X(1)
(72)

V 21 ≡ (V (2) − V (1)) − (X(2) − X(1))
∂V (1)

∂X(1)
(73)

and those obtained by substituting (1) �→ (2), (2) �→ (1) appear. The third law S → 0+

and differential criteria (under the hypotheses of section 4) imply that (∂X(1)/∂T ) → 0 and
(∂X(2)/∂T ) → 0 as T → 0+. Non-critical mixing is required.

The problem for (N ) in the presence of mixtures arises when ideal mixtures are taken
into account. In fact, in an ideal mixture the so-called mixture entropy, depending only on
the molar fractions, arises. If the ideal mixture can be considered to be ideal even in the limit
T → 0+, then a violation of (N ) occurs [31]. In order to avoid this violation, it is necessary
to postulate that either the mixture becomes non-ideal near T = 0 or it separates into its
components [26]. Diluted binary mixtures 3He–4He are non-ideal and S → 0+ is respected in
statistical mechanical calculations [32].

10. Conclusions

We have discussed further conditions which ensure the validity of the third law in its entropic
form. We have introduced the framework in which T = 0 appears as an independent
thermodynamic coordinate and also a heuristic picture for non-homogeneous thermodynamics
generalizing the standard one. Properties of S and of the thermodynamic domain have been
analysed. Then, we have recalled some differential criteria ensuring (N ), by pointing out that
they correspond to sufficient but not necessary conditions for (N ). Then, a new condition
ensuring the validity of (N ) has been introduced and discussed. In particular, condition (�)
has been shown to be the condition involving the vanishing of heat capacities as T → 0+ which
is able to ensure (N ). Its physical meaning is very clear, and amounts to the impossibility of
leaving the surface T = 0 without heat absorption by the system. It is a physical condition
which does not refer to any statistical mechanical framework, to the problem of the Carnot–
Nernst cycle (see the discussion in [1]), or to the problem of the adiabatic inaccessibility
(even if, by construction, it implies adiabatic inaccessibility of the surface T = 0). Also
a heuristic justification has been given. Then, a translation of condition (�) adapted to the
Gibbsian framework, the condition of minimum entropy at T = 0 and their equivalence with
(N ) have been discussed. The failure of (N ) occurring if infinite deformation parameters are
allowed and a look at the problem of phase coexistence and mixtures have also been briefly
addressed.

In [7] we have introduced a generalized framework for thermodynamics where
the homogeneity symmetry is substituted with quasi-homogeneity symmetry. Some
considerations about (N ) in quasi-homogeneous thermodynamics are in order. Also in the
quasi-homogeneous case, (N ) holds if and only if limT →0+ S = 0. Note that the absence of
concavity and of thermal stability can occur, but this does not necessarily mean that (N ) is
violated; cf also [10]. If (N ) holds, then S gets its absolute minimum S = 0 at T = 0, and,
if one does not allow points having S = 0 at T > 0, (�) is also implied. The equivalence
between (�̄) and (N ) runs as in section 6.
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Appendix A. Equivalence of various conditions ensuring (N)

We have shown that both condition (�) and condition (HOM) discussed in [1] are equivalent to
(N ) for homogeneous systems. As a consequence, they are equivalent conditions: (HOM) ⇔
(�). The same is true if condition (�̄) is taken into account.

We recall that, in standard homogeneous thermodynamics, many assumptions are
automatically implemented. Any point of the boundary T = 0 of the domain epi(b) has
a rectangular neighbourhood. Moreover, the domain is star-shaped with respect to any point.
Concavity of S, which, together with homogeneity, in the Gibbsian framework ensures that S is
superadditive [9], ensures also that thermal stability property (a) holds. These properties allow
a very natural equivalence between various conditions leading to (N ). The non-homogeneous
case requires instead more ad hoc hypotheses. See below.

As far as min(S) is concerned, it is evident that it is equivalent to (N ) in the homogeneous
case. In standard homogeneous thermodynamics for S as a function of T , x1, . . . , xn+1 the
following property holds: if S is continuous in the limit as T → 0+, then (N ) holds if and only
if T = 0 is a leaf of the thermodynamic foliation [1].

A.1. Non-homogeneous case

If one relaxes homogeneity and convexity, one can still find a relation between (N ), (�) and
min(S). By referring to the hypotheses
S ∈ C1(D) (default hypothesis) and

(a) S is a monotonically strictly increasing function of T at least for T ∈ (0, Tε),
(b) S ∈ C1(D) ∩ C(D ∪ {T = 0}),
(c) any point (0, X) has a rectangular neighbourhood,
(d) T −1(0) is connected,

one can infer from the previous sections that

{(a), (c), (N)} ⇒ (�);
{(a), (b), (c), (d), (�)} ⇒ (N) or also {(c), (d), (22), (23), (�)} ⇒ (N);
{(a), (b), (c), minL(S)} ⇒ (N);
{(a), (c), (N)} ⇒ minL(S).

Moreover,

{(b), (d), locmin(S)} ⇒ (N);
{(a), (c), (N)} ⇒ locmin(S);
(N) ⇒ (�̄),

{(b), (d), (�̄)} ⇒ (N).

As far as the ‘leaf’ property of the (connected) surface T = 0 is concerned, we refer to the
Gibbs-like framework where coordinates B and X ≡ X1, . . . , Xn+1 are allowed. We assume
the hypothesis (b) of continuity for S. One can show that, if (N ) is violated, there are isentropic
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paths reaching T = 0 in exactly the same way as in section 5.6 of [1]. If T = 0 has to
be a leaf, (N ) has to hold. Moreover, it is also true that, if (N ) holds in the aforementioned
framework, then T = 0 is a leaf. In fact, S(B,X) > �0 for any B > 0 whichever value of X
is considered. This means that the surface S = �0, which is the only one allowed to intersect
T = 0, actually coincides with T = 0. Then, T = 0 is a leaf.

We recall that the ‘leaf’ property is important, without it adiabatic inaccessibility is
jeopardized and one does not obtain a foliation of the whole thermodynamic domain into
disconnected adiabatic surfaces [1]. In this sense, (N ) corresponds to a regularity condition of
the Pfaffian equation δQrev = 0 at the surface T = 0, as in the homogeneous case [1].

By following section 5.6 of [1], one shows that, if in Gibbs-like coordinates δQrev ∈
C1(D ∪ {T = 0}), then T = 0 is a leaf of the thermodynamic foliation. In fact, any Cauchy
problem for integral curves of δQrev = 0 with initial point on the surface T = 0 has one
solution entirely within the T = 0 surface by hypothesis, and, being Lipschitz property
satisfied, such a solution is unique. See section 5.6 for details (note that section 5.6 of [1]
holds true in the general case, apart from section 5.6.3).

If the boundary is described by y0 = 0 in local coordinates y0, . . . , yn+1 as in
section 5.5.1 of [1], then δQrev = ∑n+1

i=0 ai(y
0, . . . , yn+1) dyi and T = 0 ⇔ y0 = 0; moreover

y0 = 0 is a codimension 1 integral manifold iff ai(y
0 = 0, y1, . . . , yn+1) = 0 for all i > 0,

and a0(y
0 = 0, y1, . . . , yn+1) > 0 is assumed (a0(y

0 = 0, y1, . . . , yn+1) �= 0 because δQrev

is non-singular [1]). As a consequence, ∂S/∂y0 = a0/T > 0 in a right neighbourhood of
y0 = 0 by continuity. This means that in such a neighbourhood S is monotonically increasing
in y0. In the following, let us put y ≡ y1, . . . , yn+1.

The double implication (�̄) ⇔ (N ) is still true because a local monotonicity in y0 is
allowed. One has to consider y0 as a curve parameter in place of B and obvious changes in
the proof.

Also the double implication of (N ) with the requirement that each point belonging to
the surface y0 = 0 is a local minimum for S (cf locmin(S)) holds true because of this local
monotonicity in y0. If each point (0, ȳ) is a local minimum for a continuous S and T = 0 is
connected, then (N ) holds (cf results 9 and 10), and there exists a neighbourhood V of (0, ȳ)

such that S(y0, y) � S(0, ȳ) in V ; moreover, by continuity, there exists a neighbourhood W

of (0, ȳ) such that a0(y
0, y) > 0 in W . Then, one finds that S(y0, y) > S(0, ȳ) for y0 > 0 in

a neighbourhood V ∩ W of (0, ȳ).
If (N ) holds and T = 0 is connected, then each (0, ȳ) is a local minimum because

of the aforementioned local monotonicity of S as a function of y0. In fact, it holds
S(y0, y) � S(0, y) ≡ S0 for each (y0, y) ∈ W and S(y0, y) = S0 only if y0 = 0.

Appendix B. Failure of thermal stability and non-equivalence of (U ) and (N )

We preliminarily note that this appendix can be better understood after a reading of
section 5.1. We give some simple examples where (N ) and (U ) are shown to be inequivalent
if thermal stability is suitably violated. The essential point is that, by allowing the heat
capacities Cx1,...,xn+1(T ) to have both positive and negative values near T = 0, one can easily
obtain that (N ) holds and the conventional (U ), intended as the absence of isentropes reaching
T = 0, necessarily fails. Let us, e.g., consider the toy-model entropy introduced at the end
of section 5.1.2, S(T , x) : [0, T1) × (x0, x2) → R, defined by S(T , x) = T (x1 − x) + �0,
with x2 > x1 > x0 and �0 � T1(x2 − x1) a non-negative constant; this function can be
continued also in the region T > T1, x > x2 by means of another function. S satisfies (N )
and the line x = x1 allows T = 0 to be reached isentropically. Thus, conventional (U ) is
violated. If a form of unattainability still holds, then one has to suppose that some hindrance



Notes on the third law of thermodynamics: II 8219

in performing the above line occurs; Landsberg hypothesizes the existence near T = 0 of an
abrupt discontinuity in order to justify such a hindrance [2]; cf also [1, 10].

It is still possible to obtain the standard implication (N ) ⇒ (U ) if, e.g., T −1(0) is not
connected, say, T −1(0) = A ∪ B, with A and B open sets such that A ∩ B = ∅. Then, if
one requires that near T = 0 the heat capacity Cx is positive in the branch A and negative
in the branch B, and moreover, (N ) holds, then (U ) holds in the conventional sense. Let us
again consider the above entropy S(T , x) = T (x1 − x) + �0, where this time the domain
is ([0, T1) × (x0, x1 − ε)) ∪ ([T0, T1) × [x1 − ε, x1 + ε]) ∪ ([0, T1) × (x1 + ε, x2)), where
ε > 0 is a small constant. There is a branching this time, the interval [x1 − ε, x1 + ε] does
not belong to T = 0, (N ) holds, Cx is positive near T = 0 for x ∈ (x0, x1 − ε) and negative
for x ∈ (x1 + ε, x2). In this domain, the isentrope x = x1 is not allowed to reach T = 0,
and unattainability in the conventional sense is implied. Of course, this multi-branching is
ad hoc, nevertheless it is a valid example of what should occur in order to allow a conventional
implication (N ) ⇒ (U ).

The converse implication, where (U ) is intended again in the conventional sense, in the
presence of heat capacities of both signs is instead impossible in general, because even if the
following two necessary conditions occur,

• a multi-branching occurs, say, into two branches,
• condition (�) holds in a branch and the opposite condition Cγ0(T ) < 0 holds in a

neighbourhood of T = 0 in the other branch,

one has still to require that the limit of S as T → 0+ is the same on the two branches. As far
as the latter condition is also to be imposed by hand and it amounts to (N ), there is no way to
obtain (N ) from (U) under the above hypothesis of non-definite signs for heat capacities near
T = 0.

See also [10], where this topic concerning the inequivalence of (U ) and (N ) is also dealt
with.

Appendix C. Branch T → 0+ as U → +∞
In general, when the heat capacity is negative definite, the limit T → 0+ can be obtained
both for finite values of U and for U → +∞. In the former case, U has a finite upper bound,
U � U0 < +∞, because T � 0 decreases for increasing U (and vice versa) and, by defining
X ≡ X1, . . . , Xn+1, it holds that

T (U,X) = T (U0, X) +
∫ U

U0

dU
1

CX(U)
. (C.1)

If T (U0, X) = 0, then T � 0 only for U � U0. Let us, e.g., consider the toy model
S(U, V ) = S0 − 2

√
U0 − UV , with U1 � U � U0, V1 � V � V0, and S0 is a constant such

that S0 � maxU,V (2
√

U0 − UV ). One finds T = √
U0 − U/V , U = U0 −V 2T 2 and that the

heat capacity is negative. Moreover, T → 0+ holds iff U → U−
0 . In this model, (N ) holds.

Maybe T = 0 can also be approached only for U → +∞, as the toy model S = U 2/V

shows. One finds T = V/(2U), i.e., U = V/(2T ) and S = V/(4T 2). In the case where
T → 0+ as U → +∞ is implemented and S → +∞ in this limit, it is also possible to check
if (N ) holds; one has to check if

lim
T →0+

[S(T , x1, . . . , xn+1) − S(T , x̄1, . . . , x̄n+1)] = 0 (C.2)

holds or fails (note that the aforementioned check in the case of the classical ideal gas
is analogous). In the above model one finds a violation of (N ), in fact for V �= V̄
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one finds limT →0+(S(T , V ) − S(T , V̄ )) �= 0. Note also that limT →0+ S(T , x1, . . . , xn+1)/

S(T , x̄1, . . . , x̄n+1) = 1 is not a sufficient condition for (N ) in the case of diverging entropy,
because of the possible presence of sub-leading terms which still do not allow that (C.2)
holds; cf [10] for the black hole case. Even in the case where (N ) fails, unattainability is
automatically ensured as (U4) unattainability, because U = +∞ is trivially a forbidden value.

There is also an even more exotic possibility, which is interesting because black hole
thermodynamics implements it. Let us consider a somehow special case in which the
heat capacity Cx1,...,xn+1(T ) is allowed to change sign. For definiteness, let us assume that
limT →T0 Cx1,...,xn+1(T ) = 0, Cx1,...,xn+1(T ) > 0 for 0 < T < T0 and Cx1,...,xn+1(T ) < 0 for
T0 < T . Being ∂U/∂T = Cx1,...,xn+1 , this means that U is an increasing function of T for
0 < T < T0 and a decreasing function of T for T0 < T . By inverting, one finds that, on
the negative heat capacity branch, T decreases as U increases and one can obtain a vanishing
T in the limit U → +∞. This happens, e.g., in the thermally unstable branch of black hole
thermodynamics, where T → 0+ can be obtained by sending the mass M of the black hole to
infinity at fixed other black hole parameters; see [10]. In this case, one can obtain S → +∞
in the limit as T → 0+ at fixed x1, . . . , xn+1, as the black hole case shows. We do not explore
this topic further, referring to [10] for further details concerning the black hole case.

Appendix D. Violation of (N ) and presence of points which are not local minima for S

Result 10. If S ∈ C(D ∪ {T = 0}) and T −1(0) is pathwise connected, then a violation of (N)
implies the existence of points belonging to the surface T = 0 which are not local minima
for S.

Proof. If
(
0, x1

0 , . . . , xn+1
0

)
is a local minimum for S, then it is also a local minimum for

�. Let us define X ≡ x1, . . . , xn+1 and consider a continuous function f (X) such that
each point of the boundary ∂A of its domain A is a local minimum. Let ∂A be path-
connected. Given two boundary points Y and Z, let us consider a continuous simple path
γYZ(t) : [0, 1] → ∂A such that γYZ(0) = Y and γYZ(1) = Z. Then let us consider
F(t) ≡ f (γYZ(t)), which is a continuous function. The Weierstrass theorem ensures that
F gets an absolute maximum in [0, 1]. This absolute maximum tmax corresponds to a point
Xm. The requirement for Xm to be also a local minimum imposes that F is constant along
the aforementioned path. In fact, there exists a neighbourhood t1 < tm < t2 ⊂ [0, 1] such
that F(tm) � F(t) because Xm is a local minimum; the inequality F(tm) � F(t) for all
t ∈ [0, 1] implies that F(t) = Fm = const in (t1, t2). Moreover, one has that, for small
ε > 0, F (t1 + ε) = Fm and limε→0+ F(t1 + ε) = limt→t1 F(t) = Fm, where the latter equality
is due to continuity. Then t1 corresponds both to a local minimum and to an absolute maximum.
Then, there exists a 0 � t3 < t1 such that F is constant. By iterating, one finds that F has to
be constant on the whole interval [0, 1]. The path chosen being generic, it follows that F has
to be constant on ∂A. As a consequence, � has to be constant at the surface T = 0 if all the
points belonging to T = 0 are local minima. �
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